

Calk-In Machine Bolt Anchor

PRODUCT DESCRIPTION

The Calk-In is a pre-assembled precision cast calking type machine bolt anchor which can be used in concrete, block, brick or stone. The Calk-In consists of an antimonial lead alloy calking sleeve and a Zamac alloy internally threaded expanded cone. This anchor is not recommended for use in overhead applications.

GENERAL APPLICATIONS AND USES

- Windows
 Screens
- Sliding Doors Shutters

FEATURES AND BENEFITS

- + Readily accepts machine bolts
- + Internally threaded anchor for easy removability and service work
- + Shallow embedment

APPROVALS AND LISTINGS

Federal GSA Specification – Meets descriptive and proof load requirements of CID A-A-1922A, Type 1

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastening. Machine bolt anchors shall be Calk-In as supplied by Powers Fasteners, Inc., Brewster, NY.

SECTION CONTENTS Page No.

General Information	1
Installation and Material Specifications	1
Performance Data	2
Ordering Information	3

Calk-In

THREAD VERSION

UNC Thread

ANCHOR MATERIALS

Antimonial Lead Alloy Body and Zamac Alloy Cone

ROD/ANCHOR SIZE RANGE (TYP.)

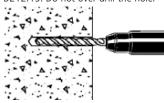
No. 8 Screw to 1/2" diameter

SUITABLE BASE MATERIALS

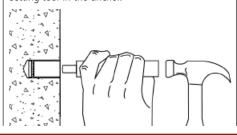
Normal-Weight Concrete Grout-Filled Concrete Masonry (CMU) Brick Masonry

INSTALLATION AND MATERIAL SPECIFICATIONS

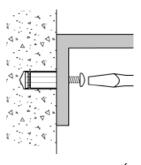
Installation Specifications


	Rod/Anchor Size								
Dimension	#8-32	#8-32 #10-24 1/4" 5/16" 3/8" 1/2"							
ANSI Drill Bit Size, (in.)	5/16	3/8	1/2	5/8	3/4	7/8			
Max. Tightening Torque	15 (inlbs.)	20 (inlbs.)	60 (inlbs.)	7 (ftlbs.)	10 (ftlbs.)	15 (ftlbs.)			
Threaded Length in Cone (in.)	13/32	15/32	19/32	3/4	1	1 1/8			

Material Specifications


Anchor Component	Component Material
Anchor Sleeve (Body)	Antimonial Lead Alloy
Cone	Zamac Alloy

Installation Guidelines


Drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Do not over drill the hole.

Blow the hole clean of dust and other material. Insert the anchor into the hole. Position the setting tool in the anchor.

Using the tool, set the anchor by driving the lead sleeve over the cone using several sharp hammer blows. Be sure the anchor is at the required embedment depth so that anchor threads do not protrude above the surface of the base material. Positions the fixture, insert screw or bolt and tighten.

www.powers.com

Canada: (905) 673-7295 or (514) 631-4216

PERFORMANCE DATA

Ultimate Load Capacities for Calk-In in Normal-Weight Concrete^{1,2}

Rod/Anchor Size in.	Minimum Embedment Depth in. (mm)	Minimum Concrete Compressive Strength (f'c)							
		2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)			
		Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
#8-32	1/2	335	310	365	360	380	360		
	(12.7)	(1.5)	(1.4)	(1.6)	(1.6)	(1.7)	(1.7)		
#10-24	5/8	765	885	975	940	1,105	940		
	(15.9)	(3.4)	(4.0)	(4.3)	(4.2)	(4.9)	(4.2)		
1/4 - 20	7/8	1,200	1,355	1,500	1,410	1,640	1,410		
	(22.2)	(5.3)	(6.1)	(6.7)	(6.3)	(7.3)	(6.3)		
5/16-18	1	1,570	1,880	1,965	2,070	2,160	2,070		
	(25.4)	(7.0)	(8.5)	(8.7)	(9.3)	(9.6)	(9.3)		
3/8-16	1 1/4	1,985	2,700	2,485	3,305	2,895	3,305		
	(31.8)	(8.8)	(12.2)	(11.1)	(14.9)	(12.9)	(14.9)		
1/2 - 13	1 1/2	2,795	3,995	3,495	4,545	3,810	4,545		
	(38.1)	(12.4)	(18.0)	(15.5)	(20.5)	(16.9)	(20.5)		

Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
 Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

Allowable Load Capacities for Calk-In in Normal-Weight Concrete^{1,2}

Rod/Anchor	Minimum Embedment Depth	Minimum Concrete Compressive Strength (f'c)							
Size		2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi	(41.4 MPa)		
in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)		
#8-32	1/2	85	75	90	90	95	90		
	(12.7)	(0.4)	(0.3)	(0.4)	(0.4)	(0.4)	(0.4)		
#10-24	5/8	190	220	245	235	275	235		
	(15.9)	(0.8)	(1.0)	(1.1)	(1.1)	(1.2)	(1.1)		
1/4-20	7/8	300	340	375	355	410	355		
	(22.2)	(1.3)	(1.5)	(1.7)	(1.6)	(1.8)	(1.6)		
5/16-18	1	390	470	490	520	540	520		
	(25.4)	(1.7)	(2.1)	(2.2)	(2.3)	(2.4)	(2.3)		
3/8-16	1 1/4	495	675	620	825	725	825		
	(31.8)	(2.2)	(3.0)	(2.8)	(3.7)	(3.2)	(3.7)		
1/2 - 13	1 1/2	700	1,000	875	1,135	950	1,135		
	(38.1)	(3.1)	(4.5)	(3.9)	(5.1)	(4.2)	(5.1)		

Allowable load capacities listed are calculated using and applied safety factor of 4.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.
 Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

ANCHOR

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Calk-In in Grout-Filled Concrete Masonry^{1,2}

Rod/Anchor	Minimum	f´ _{<i>m</i>} ≥ 1,500 psi (10.4 MPa)						
Size	Embedment Depth	Ultima	te Load	Allowable Load				
in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
#8-32	1/2	335	310	65	60			
	(12.7)	(1.5)	(1.4)	(0.3)	(0.3)			
#10-24	5/8	740	885	150	175			
	(15.9)	(3.3)	(4.0)	(0.7)	(0.8)			
1/4-20	7/8	880	1,250	175	250			
	(22.2)	(4.0)	(5.6)	(0.8)	(1.1)			
5/16-18	1	1,470	1,585	295	315			
	(25.4)	(6.6)	(7.1)	(1.3)	(1.4)			
3/8-16	1 1/4	1,700	2,265	340	455			
	(31.8)	(7.7)	(10.2)	(1.5)	(2.0)			
1/2-13	1 1/2	2,360	3,210	470	640			
	(38.1)	(10.6)	(14.4)	(2.1)	(2.9)			

Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).
 Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20

or higher may be necessary depending upon the application such as in sustained tensile loading applications.

Ultimate and Allowable Load Capacities for Calk-In in Clay Brick Masonry^{1,2}

Rod/Anchor	Minimum	f´ _{<i>m</i>} ≥ 1,500 psi (10.4 MPa)						
Size	Embedment Depth	Ultima	te Load	Allowable Load				
in.	in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)			
#8-32	1/2	335	310	65	60			
	(12.7)	(1.5)	(1.4)	(0.3)	(0.3)			
#10-24	5/8	765	890	150	180			
	(15.9)	(3.4)	(4.0)	(0.7)	(0.8)			
1/4-20	7/8	1,460	1,480	290	295			
	(22.2)	(6.6)	(6.7)	(1.3)	(1.3)			
5/16-18	1	1,730	1,995	345	400			
	(25.4)	(7.8)	(9.0)	(1.6)	(1.8)			
3/8-16	1 1/4	2,200	3,600	440	720			
	(31.8)	(9.9)	(16.2)	(2.0)	(3.2)			
1/2-13	1 1/2	3,200	4,535	640	905			
	(38.1)	(14.4)	(20.4)	(2.9)	(4.1)			

Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 1.

90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).
 2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Anchors are not recommended for use overhead or for life safety. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as in sustained tensile loading applications.

ORDERING INFORMATION

Calk-In						
Cat. No.	Size	Drill Diameter	Min. Hole Depth	Std. Box	Std. Carton	Wt./100
9205	#8-32	5/16"	1/2"	100	1,000	1
9210	#10-24	3/8"	5/8"	100	1,000	1 3/4
9220	1/4"-20	1/2"	7/8"	100	1,000	4 1/2
9225	5/16"-18	5/8"	1"	50	250	7 3/4
9230	3/8"-16	3/4"	1 1/4"	50	250	14
9240	1/2"-13	7/8"	1 1/2	50	250	19

Setting Tools

<u> </u>						
Cat. No.	9201	9211	9221	9226	9231	9241
Size	#8	#10	1/4"	5/16"	3/8"	1/2 "

© 2011 Powers Fasteners, Inc. All Rights Reserved. For the most current information Visit www.powers.com